Design of a 20,000 Pound Variable Stiffness Actuator for Structural Vibration Attenuation
نویسندگان
چکیده
This paper describes the design of a novel actuator capable of protecting a full scale structure from severe load conditions. The design includes a cylinder filled with pressurized nitrogen and uses commercially available components. We demonstrate that the actuator behaves like a spring with an adjustable unstretched length, and that the effective spring stiffness can be changed easily by changing the initial cylinder pressure. In order to test the actuator on a full scale structure, an effective spring constant of approximately 10,000 pounds/inch was required over a two inch stroke. Because of the spring-like behavior, rather than damper-like behavior, the actuator does not transmit high forces to a vibrating structure like linear viscous dampers do when velocities are high. We analyze features of critical importance to the design of the actuator such as the cylinder dimensions, operating pressure, and valve selection. We then investigate the performance using a novel experimental apparatus that mimics the dynamics of a single story building, but has 1/400 the weight.
منابع مشابه
Vibration Attenuation Timoshenko Beam Based on Optimal Placement Sensors/Actuators PZT Patches with LQR-MOPSO
The main objective of this study is to reduce optimal vibration suppression of Timoshenko beam under non-periodic step and impulse inputs. Cantilever beam was modeled by Timoshenko theory and finite element numerical method. Stiffness (K), mass (M), and damping (C) matrices are extracted. Then, in order to control structure vibration, piezoelectric patches were used due to simultaneous dual beh...
متن کاملFree vibration analysis of variable stiffness composite laminated thin skew plates using IGA
A NURBS-based isogeometric finite element formulation is developed and adopted to the free vibration analysis of finite square and skew laminated plates. Variable stiffness plies are assumed due to implementation of curvilinear fiberreinforcements. It is assumed due to employment of tow placement technology, in each ply of variable stiffness composite laminated plate the fiber reinforceme...
متن کاملA Simple Approach for Determination of Actuator and Sensor Locations in Smart Structures Subjected To the Dynamic Loads
The present work demonstrates the successful application of a simple active vibration control procedure based on structural dynamics. Based on mathematical and structural dynamics’ theories, the appropriate locations of sensor and actuator locations of the smart structure are predicted. Also, the optimum value of actuator force which controls the structural vibrations as quickly as it is possib...
متن کاملDesign and Analysis of Smart Structures for Active Vibration Control using Piezo-Crystals
The present work considers the active vibration control of beam like structures with laminated piezoelectric sensor and actuator layers bonded on top and bottom surfaces of the beam. A finite element model based on Euler-Bernoulli beam theory has been developed. The contribution of the piezoelectric sensor and actuator layers on the mass and stiffness of the beam has been considered with modeli...
متن کاملFree Vibration Analysis of Variable Stiffness Composite Laminates with Flat and Folded Shapes
In this article, free vibration analysis of variable stiffness composite laminate (VSCL) plates with flat and folded shapes is studied. In order to consider the concept of variable stiffness, in each layer of these composite laminated plates, the curvilinear fibers are used instead of straight fibers. The analysis is based on a semi-analytical finite strip method which follows classical laminat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007